Protect Your Investment

Vibration Analysis is one of the most important maintenance actions you can perform on a Frick® Screw Compressor. This predictive tool allows you to plan for simple maintenance in order to prevent unplanned, more costly repairs. Vibration analysis results in lower life cycle costs as well as the peace of mind that your Frick® Screw Compressor will continue to operate safely and reliably for many years.

Understanding

Frick® Screw Compressors utilize roller element bearings that have a consistent vibration signature in both operational and failure modes. In addition, each model of Frick® Screw compressor has unique vibration characteristics that contribute to the overall signature of the machine.

We have invested many years of testing on both our bearings and screw compressors to better understand and identify the unique vibration characteristics they possess. Much of this information is proprietary and therefore understood best by a qualified Frick® representative.

Equipment

Because we have invested the time to test and identify the vibration characteristics of all our screw compressor models, it is imperative to use the proper equipment to acquire correct vibration readings. This correct vibration spectrum must then be recorded and transmitted to Frick® using proper procedures. This assures that the data to be analyzed is both accurate and reliable.

Application

When the correct, full-spectrum analysis of vibration readings has been transmitted to Frick®, accurate interpretation of that data is required to make it a useful diagnostic tool.

Our personnel are trained to understand full-spectrum vibration data as it applies to Frick® Screw Compressors. The unique vibration characteristics of Frick® Screw Compressors yield a vibration spectrum that can only be understood by trained Frick® personnel. Incorrect readings by third parties can be costly in both time and money.

Accurate Vibration Analysis...
only from Johnson Controls - Frick®

Contact your Frick® Factor for more information.